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Abstract. The geometrically based fundamental-measure free-energy density functional for
hard spheres is briefly reviewed. The corresponding bridge functional can be successfully applied
for a large variety of quite disparate systems, including classical plasmas. The application of
the Gauss–Bonnet theorem enables one to generalize the theory to molecular fluids.

The density functional formalism is a successful and widely applicable approach to a variety
of interfacial phenomena such as adsorption, wetting, and freezing, and enables one to
investigate confined fluids with all sorts of inhomogeneities [1, 2]. Spatial confinements
drastically affect structural and dynamical quantities as well as the location of phase
transitions. The exact free-energy functional of the average one-body density,ρ(r), should
be able to provide a unifying description of all such confined situations within density
functional theory. The central quantity is the excess free energy (over the exactly known
‘ideal-gas’ contributions),Fex [ρ(r)], which originates in interparticle interactions, and is
generally unknown! The well studied hard-sphere fluid serves as the almost standard
reference system [3] for classical fluids. It provides the starting point, and an important test,
for all density functional approximations. This mini-review presents an updated outline of
the geometrically based fundamental-measure free-energy density functional [4].

The fundamental-measure excess free-energy functional for a mixture of hard spheres
of radii Ri in D dimensions was postulated [5] to have the following form:

Fex [{ρi(r)}]
kBT

=
∫

dx 8[{nα(x)}]. (1)

It is assumed that theexcess free-energy density8 is a function of only the system-averaged
fundamental geometric measures of the particles,

nα(x) =
∑

i

∫
ρi(x

′)w(α)
i (x − x′) dx′.

The weight functionsw(α)
i are characteristic functions for the geometry of the particles.

This form implies that then-particle direct correlation functions (dcfs), which are functional
derivatives of Fex [{ρi(r)}], are given by convolutions of the weight functions in the form
that (a) is required by the scaled-field-particle [6] geometric analysis, and (b) incorporates
the basic idea ofinterpolating between the ‘ideal-liquid’ [7] (high-density) and ideal-gas
limits. The ideal-liquid pair dcf is dominated by convolutions of single-particle geometries,
i.e. overlap volume and overlap surface area, and the low-density dcf is given by the pair
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exclusion volume. This interpolation is realized through the convolution decomposition of
the excluded volume for a pair of convex hard bodies in terms of characteristic functions
for the geometry of the two individual bodies. Auniquesolution was found for the special
case of spheres with aconvolution decompositioninvolving a minimal number of different
weight functions [5]:

−fij (rij ) = w
(0)
i ⊗ w

(3)
j + w

(0)
j ⊗ w

(3)
i + w

(1)
i ⊗ w

(2)
j + w

(1)
j ⊗ w

(2)
i

−w(V 1)
i ⊗ w(V 2)

j − w(V 1)
j ⊗ w(V 2)

i (2)

where the Mayer function for a pair of spheres is minus the Heaviside step function,
fij (rij ) = −2(Ri + Rj − r), and where the convolution product,

w
(α)
i ⊗ w

(γ )

j =
∫

w
(α)
i (x − ri )w

(γ )

j (x − rj ) dx

also implies the scalar product between vectors. The minimal weight-function space for
D > 1 contains only three functions, two scalar functions representing the characteristic
functions for the volume and the surface of a particle and a surface vector function,
w

(D)
i (r) = 2(Ri − r); w

(D−1)
i (r) = δ(Ri − r); w(V (D−1))

i (r) = (r/r)δ(Ri − r). The
other weight functions in 3D are proportional to these three, and are given by

w
(0)
i (r) = w

(2)
i (r)

4πR2
i

w
(1)
i (r) = w

(2)
i (r)

4πRi

w(V ,1)
i (r) = w(V 2)

i (r)

4πRi

.

The weighted densitiesnα(x) are dimensional quantities with dimensions [nα] =
(volume)(α−D)/D where 06 α 6 D, and provide a functional basis set,{φj }, for expanding
the function, 8 = ∑

i Ai(nD)φi , of dimension (volume)−1. The coefficients,Ai(nD),
as functions of the dimensionlessnD are determined from the scaled-particle differential
equation

−8 +
∑

α

nα

∂8

∂nα

+ n0 = ∂8

∂nD

and the constants of integration can be fixed by known limits or desirable properties.
By including only the simplest positive power combinations of the weighted densities,
{φj } = n0, n1n2, nV 1 ·nV 2, n

3
2, n2(nV 2 ·nV 2), the following excess free-energy density was

derived [5]:

8(D=3)[{nα}] = 8
(3)

1 + 8
(3)

2 + 8
(3)

3

8
(3)

1 = −n0 ln(1 − n3) 8
(3)

2 = n1n2 − nV 1 · nV 2

1 − n3
8

(3)

3 =
1
3n3

2 − n2(nV 2 · nV 2)

8π(1 − n3)2
.

(3)

This free-energy model provides [8, 9] the first unified derivation of the Percus–Yevick
(PY) [10] and scaled-particle-theory (SPT) [11] results for hard spheres. The PY-SPT
theory is the most comprehensive available analytic description of the bulk hard-sphere
thermodynamics and structure, that serves as the standard input for otherweighted-density
models. Functional differentiation of the functional (3) yields a bulk dcf which is identical
to the analytic solution of the PY equation, in its geometric form [6]. It was subsequently
found [12, 13] that in the special case of 3D spheres, the functional (3) is unique in the
sense that a completely equivalent [14] functional can be derived which contains only scalar
weight functions. This result is also important for checking numerical calculations: the
calculations using this so-called ‘simplified’ version are completely equivalent to using the
original functional (3). The bulk three-particle dcf was calculated ink-space [5, 12, 14] with
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good agreement with simulations. The same procedure, that led to (3) in 3D, when applied
[5, 8] to 1D spheres leads to the exact functional [15] for hard rods. The 2D functional [9]
features an accurate bulk free energy for hard discs, and provides accurate analytic structure
factors [9]. The solution of the density profile equations (i.e. the Euler–Lagrange equations
for minimizing the grand potential) using the functional (3), in the special case when the
external potential is generated by atest particleat the origin of coordinates, yields [16, 17]
bulk pair correlation functions, which are generally consistent with the PY dcf obtained
from functional differentiation, yet in better agreement with the simulations. The functional
(3) yields the PY bulk dcfs, thus predicting that bulk hard-sphere fluid binary mixtures never
phase separate. Yet in the test-particle bulk limit it predicts phase separation for large size
ratios between the spheres [17]. The functional (3) yields density profiles of hard spheres
and hard-sphere binary mixtures [16, 13] in slit-like pores, in very good agreement with the
simulations even for narrow slits.

Quasi-2D (fluids between two narrow plates), quasi-1D (fluids inside narrow cylindrical
pores), and quasi-0D (a cavity that cannot hold more than one particle) situations, provide
important consistency checks of any approximate functional. The geometrically based
fundamental-measure theory provides [18] the firstcomprehensivefree-energy functional
for 3D hard spheres with the correct properties of dimensional crossover. The term8

(3)

3
diverges, however, in the 1D limit and in the 0D limit, which is why the functional (3)
cannot stabilize a solid. A simple symmetrized version of8

(3)

3 was introduced recently [18]
in order to overcome these divergences:

8
(3)

3,sym =
[ 1

3(n2)
3

8π(1 − n3)2

]
(1 − ξ2)3 with ξ =

∣∣∣∣nV 2(r)

n2(r)

∣∣∣∣
and where the form(1 − ξ2)3 was chosen since it recovers8(3)

3 by the first two terms,
1−3ξ2, in its ξ2-expansion, and thus yields the same PY dcfs for the bulk fluid. Modelling
the 3D solid by Gaussians at fcc sites, it was found [18] that8

(3)

3,sym yields better solid–
fluid transition parameters [18] than almost all previous functionals when compared with
simulations. In the 0D limit the new8(3)

3,sym vanishes so that the functional (3) gives the exact
0D free energy. As a result it is the first that can yield the solid, with the correct vacancy
concentration (i.e. the normalization of the Gaussians), under completelyfree minimization!
The symmetrized form of8(3)

3,sym, suggested by the 0D limit, also improves the already good
performance of the functional near the bulk 3D limit [18]. For the functional (3) to give the
exact bulk hard-rod excess free energy,8

(3)

3 must vanish in the 1D limit. The contribution
of the new8

(3)

3,sym does not strictly vanish in the bulk 1D limit, but it is relatively very
small, except near closest packing where it dominates. In the 2D limit it performs about
as well as8

(3)

3 : the functional (3) yields the bulk hard-disc excess free energy in good
agreement with simulations.

The fundamental-measure functional provides explicit simple expressions [16] for the
bridge functional, which represents the sum of all termsbeyond second orderin the
functional Taylor expansion. Theansatzof universality of the bridge functional [16],
which is approximated by that for the hard spheres, enables one to apply the hard-sphere
functional (3) for fluids with arbitrary interactions. With the bridge functional derived
from the free-energy density (3), accurate results are obtained for the bulk pair correlation
functions for a large variety of potentials, for both one-component systems and mixtures
[16, 17, 19, 20], including also a highly accurate solution for the ‘inverse’ scattering problem.
The hard-sphere ‘universal’ bridge functional has been tested (directly and implicitly) very
successfully also for a variety of inhomogeneous systems of particles, in slab geometry, for
hard- and soft-pair interactions and different external potentials [21, 22, 23]. Particularly
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striking tests are provided by strong electrolytes near a charged electrode [13, 16], and by
the plasma of point charges near a wall [16].

It appears from these many investigations that, by capturing the correct geometrical
features, the fundamental-measure hard-sphere functional leads to accurate description of the
structure of the inhomogeneous simple fluid. The fundamental-measure weighted densities
have quite remarkable properties, but they cannot provide the complete basis set for the
exact functional. Yet, they enable comprehensive analysis and systematic improvement of
the functional: the new8(3)

3,sym already provides the first comprehensive free-energy density
functional for 3D hard-sphere fluids with adequate properties of dimensional crossover.
The direct extension of the functional equation (3) to molecular (‘complex’) fluids is made
possible by the relation [24] between the convolution decomposition for spheres, equation
(2), and theGauss–Bonnet theoremfor convex bodies. An interesting application of the
fundamental-measure theory [6, 5] to parallel hard cubes was published very recently [25].
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